Name: \qquad

Prerequisite: How do you know when fractions are equivalent?

Study the example showing one way to find

 equivalent fractions. Then solve problems 1-6.
Example

Find a fraction equivalent to $\frac{4}{6}$.
The number line shows both thirds and sixths.
$\frac{4}{6}$ and $\frac{2}{3}$ are at the same point on the number line.

$\frac{4}{6}=\frac{2}{3}$

1 Look at the number line in the example above. Write a fraction equivalent to $\frac{2}{6}$.

$$
\frac{2}{6}=
$$

\qquad
2 Fill in the missing fractions on the number line.

3 Look at the number line in problem 2.
Write equivalent fractions.

$$
\frac{1}{4}=\quad=\frac{4}{8} \quad \frac{3}{4}=
$$

\qquad

Solve.

4 Look at the models below. Shade the models to show two fractions equivalent to $\frac{3}{4}$. Then write the fractions.

\qquad

\qquad

5 Use the models below to complete the sentences. The models show wholes and parts. There are 3 wholes, each divided into fourths.

Each part is \qquad of a whole.

There are \qquad fourths in all. $\frac{\square}{\square}=3$

6 Look at the models below. Write the fractions they represent. Are the fractions equivalent? Explain.

\qquad

Show Equivalent Fractions

Study the example showing one way to model equivalent fractions. Then solve problems 1-8.

Example

A model can show equivalent fractions.
The model has 5 equal parts. It shows $\frac{3}{5}$.

Divide the model into 10 equal parts to show an equivalent fraction.
The model shows $\frac{6}{10}$.
$\frac{3}{5}=\frac{6}{10}$

1 Divide the model below to show $\frac{1}{2}=\frac{5}{10}$.

2 Draw a model to show $\frac{1}{6}$. Then divide the model into twice as many parts to find an equivalent fraction.
$\frac{1}{6}=$ \qquad
3 Multiply the numerator and denominator of $\frac{1}{6}$ by 2 .

$$
\frac{1 \times 2}{6 \times 2}=
$$

\qquad
4 Why does it make sense that the fraction you wrote in problems 2 and 3 is the same?
\qquad
\qquad

Solve.

5 Fill in the missing numbers to find two equivalent fractions to $\frac{4}{5}$.

$$
\frac{4 \times \square}{5 \times 2}=\frac{\square}{10} \quad \frac{4 \times 20}{5 \times 20}=\frac{\square}{100}
$$

6 Look at problem 5. Explain how $\frac{8}{10}=\frac{80}{100}$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
7 Shade the model below to show $\frac{1}{5}$. Then show 10 equal parts and write an equivalent fraction.

8 Shade the model below to show $\frac{2}{3}$. Then show 12 equal parts and write an equivalent fraction.

\qquad

Reason and Write

Study the example. Underline two parts that you think make it a particularly good answer and a helpful example.

Example

Find a fraction equivalent to $\frac{1}{2}$ that has a denominator of 12 .

Show your work. Use models, words, and numbers to explain your answer.

I draw a model that shows $\frac{1}{2}$.

To find an equivalent fraction with a denominator of 12, I divide the model into 12 equal parts. The model shows $\frac{6}{12}$. So $\frac{1}{2}=\frac{6}{12}$.

I can also multiply both the numerator and denominator of $\frac{1}{2}$ by 6 to find an $\frac{1 \times 6}{2 \times 6}=\frac{6}{12}$ equivalent fraction with a denominator of 12.

Solve the problem. Use what you learned from the example.

Find a fraction equivalent to $\frac{2}{5}$ that has a denominator of 20 .

Show your work. Use models, words, and numbers to explain your answer.

Did you...

- use models to show equivalent fractions?
- use numbers to write equivalent fractions?
- use words to explain?

