\qquad

Prerequisite: Model Comparing Fractions

Study the example problem showing ways to compare fractions. Then solve problems 1-9.

Example

Sandy ran $\frac{3}{10}$ of a mile during gym class. Alicia ran $\frac{1}{10}$ of
a mile, and Rosa ran $\frac{3}{8}$ of a mile. Compare the distance
Sandy ran to the distances Alicia and Rosa ran.

Sandy

Alicia

Sandy

Rosa

$\frac{3}{10}$ and $\frac{3}{8}$ have the same numerator.

$$
\frac{3}{10}<\frac{3}{8}
$$

Sandy ran a greater distance than Alicia and a lesser distance than Rosa.

1 Look at the example problem above. Write each comparison in words. Use greater than and less than.
$\frac{3}{10}>\frac{1}{10}$ Three tenths is \qquad one tenth. $\frac{3}{10}<\frac{3}{8} \quad$ Three tenths is \qquad three eighths.
2 Shade the models to show $\frac{2}{8}$ and $\frac{2}{5}$. Then write $<,>$, or $=$ to compare the fractions.

$$
\frac{2}{5}-\frac{2}{8}
$$

Solve.

3 Shade the models to show $\frac{5}{12}$ and $\frac{7}{12}$.

4 Compare $\frac{5}{12}$ and $\frac{7}{12}$ using symbols and words.

$$
\frac{5}{12}-\frac{7}{12}
$$

Five twelfths is \qquad seven twelfths.

5 Explain how you used the models in problem 3 to show how the two fractions compare in problem 4.
\qquad
\qquad
\qquad
6 Label $\frac{7}{8}$ on the number line below.

7 Label $\frac{7}{12}$ on the number line below.

8 Compare $\frac{7}{8}$ and $\frac{7}{12}$ using symbols and words.
$\frac{7}{8}-\frac{7}{12}$
Seven \qquad is \qquad seven twelfths.

9 Explain how you used the number lines in problems 6 and 7 to show how the two fractions compare in problem 8.
\qquad
\qquad
\qquad

Find a Common Numerator or Denominator
Study the example problem showing how to compare fractions by finding a common denominator. Then solve problems 1-7.

Example

A length of ribbon is $\frac{3}{4}$ foot. Another length of ribbon is $\frac{5}{6}$ foot.
Compare the lengths using a symbol.
Find a common denominator. $\quad \frac{3 \times 3}{4 \times 3}=\frac{9}{12} \quad \frac{5 \times 2}{6 \times 2}=\frac{10}{12}$
Write the equivalent fractions.

$$
\frac{3}{4}=\frac{9}{12} \quad \frac{5}{6}=\frac{10}{12}
$$

Compare the numerators.

$$
\frac{9}{12}<\frac{10}{12}
$$

$9<10$ so $\frac{9}{12}<\frac{10}{12}$
$\frac{3}{4}<\frac{5}{6}$

1 Shade the models below to show $\frac{3}{4}$ and $\frac{5}{6}$.
Fill in the blank to show the comparison. $\frac{3}{4}-\frac{5}{6}$

2 Divide each model in problem 1 into 12 equal parts to show an equivalent fraction. Write the equivalent fractions and symbol to show the comparison.

3 Compare $\frac{2}{3}$ and $\frac{9}{12}$ by finding a common denominator.
a. Write a fraction equivalent to $\frac{2}{3}$ with a denominator of 12 .
b. Compare the fractions.
 So, $\frac{2}{3}$ 2 $-\frac{9}{12}$.

Vocabulary

denominator the number below the line in a fraction. It tells how many equal parts are in the whole.

4 equal parts
numerator the number above the line in a fraction. It tells how many equal parts are described.

3 parts described

Solve.
4 Compare $\frac{1}{5}$ and $\frac{2}{12}$ by finding a common numerator.
a. Write a fraction equivalent

b. Compare the fractions. $\frac{2}{\square}-\frac{2}{12}$. So, $\frac{1}{5}-\frac{2}{12}$.

5 Compare the fractions. Use the symbols $<_{,}>$, and $=$.
a. $\frac{2}{5}-\frac{8}{10}$
b. $\frac{5}{12}-\frac{1}{3}$
c. $\frac{3}{5}-\frac{60}{100}$
d. $\frac{9}{100}-\frac{9}{10}$

6 Tell whether each sentence is True or False.
a. $\frac{2}{3}>\frac{5}{6}$

\square False
b. $\frac{4}{10}<\frac{4}{5}$
\square True

c. $\frac{70}{100}=\frac{7}{10}$ \square True \square False
d. $\frac{1}{3}>\frac{3}{1}$True \square False
e. $\frac{3}{4}<\frac{2}{3}$ \square True \square False

7 Can two fractions with the same numerator and different denominators be equal? Use words and numbers to explain.
\qquad

Use a Benchmark to Compare Fractions

Study the example problem using 1 as a benchmark to compare fractions. Then solve problems 1-4.

Example

Carol compared $\frac{3}{4}$ and $\frac{2}{1}$. She says $\frac{3}{4}>\frac{2}{1}$ because both
the numerator and the denominator in $\frac{3}{4}$ are greater
than the numerator and denominator in $\frac{2}{1}$.
$3>2$ and $4>1$. Is Carol correct?

$$
\frac{3}{4}<1 \text { and } \frac{2}{1}>1
$$

$\frac{3}{4}<\frac{2}{1}$ and $\frac{2}{1}>\frac{3}{4}$. Carol is not correct.
(1) Compare $\frac{9}{10}$ and $\frac{3}{2}$.
a. Label $\frac{9}{10}$ and $\frac{3}{2}$ on the number line below.

b. Which fraction is greater than 1 ? \qquad
c. Which fraction is less than 1? \qquad
d. Fill in the blank. Explain how you found your answer. $\frac{9}{10}-\frac{3}{2}$
\qquad
\qquad
\qquad

Solve.

2 Compare $\frac{5}{6}$ and $\frac{1}{3}$ using the benchmark fraction $\frac{1}{2}$.
a. Label $\frac{5}{6}$ and $\frac{1}{3}$ on the number line below.

b. Which fraction is greater than $\frac{1}{2}$? \qquad
c. Which fraction is less than $\frac{1}{2}$? \qquad
d. Fill in the blank. Explain how you found your answer.
$\frac{5}{6}-\frac{1}{3}$
\qquad
\qquad
\qquad
3 Use a benchmark fraction to compare the fractions $\frac{7}{10}$ and $\frac{5}{12}$. Explain how you found your answer.
\qquad
\qquad
\qquad
4 Tell whether each number sentence is True or False. Then write the benchmark you could use to compare the fractions.

Benchmark
a. $\frac{9}{8}>\frac{11}{12} \quad \square$ True $\quad \square$ False
b. $\frac{2}{5}<\frac{5}{6}$
\square True \square False
c. $\frac{7}{10}<\frac{2}{4}$ \square True \square False
d. $\frac{4}{5}>\frac{2}{2}$

\square False
e. $\frac{3}{2}<\frac{9}{10}$ \square True \square False
\qquad
\qquad
\qquad
\qquad
\qquad

Compare fractions

Solve the problems.

1 Which of the following is greater than $\frac{2}{3}$?
Circle all that apply.
A $\frac{3}{4}$
C $\frac{8}{12}$
B $\frac{5}{6}$
D $\frac{3}{2}$

Find a common denominator for each pair of fractions.

2 Harry ate $\frac{5}{8}$ of a sandwich. Sven ate $\frac{2}{5}$ of a sandwich. Micah ate $\frac{3}{4}$ of a sandwich. Gabe ate $\frac{6}{12}$ of a sandwich. Who ate the most of his sandwich?
A Harry
C Micah
B Sven
D Gabe

3 Erica and Matt earn the same amount of money each month. Erica saves $\frac{3}{10}$ of her earnings. Matt saves $\frac{3}{6}$ of his earnings. Which explanation correctly tells who saves more?

A Erica saves more because tenths are greater than sixths.

B Matt saves less because sixths are less than tenths.
C Erica saves more because $\frac{3}{10}<\frac{3}{6}$.
D Matt saves more because $\frac{3}{6}>\frac{3}{10}$.
Fran chose \mathbf{C} as the correct answer. How did she get that answer?
\qquad
\qquad
\qquad

Solve.

4 Melanie read 45 pages of a 100-page book. Her younger sister read $\frac{1}{2}$ of a 10 -page book. Who read a greater fraction of her book, Melanie or her sister?

Show your work.

One fraction has a denominator of 100 ; the other fraction has a denominator of 10 .

Solution: \qquad

5 Compare $\frac{5}{4}$ and $\frac{9}{10}$. Describe two methods you could use to compare the fractions.
$\frac{5}{4}-\frac{9}{10}$
Method A
\qquad
\qquad
\qquad
\qquad
Method B \qquad
\qquad
\qquad
\qquad
\qquad

